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The question of negative capacitance and its relation to instabilities and 
phase transitions at electrified interfaces 

by MICHAEL B. PARTENSKII, VLADIMIR DORMAN 
and PETER C .  JORDAN 

Department of Chemistry, Brandeis University, Waltham, MA 02254, USA 

The question of negative differential capacitance (C) at electrified interfaces is 
critically reviewed. The importance of the thermodynamic constraints and the 
physical differences between systems under charge and potential control is 
emphasized. For a system under potential control, C can never be negative, while 
no such general constraint is mandated for systems under charge control. However, 
the appearance of a negative C domain in isolated systems can be limited by a phase 
transition to a non-uniform state. The occurrence of such transitions depends on 
the ‘stiffness’ of the interface. Theoretical calculations that predict C < 0 are 
analysed. We investigate a series of electromechanical analogues of the existing 
models of double layer, illustrating the appearance of C < 0 in ‘rigid’ systems 
under equilibrium conditions, and the transition to the non-uniform state in 
systems with moderate ‘surface tension’, narrowing the C < 0 domain. The effect 
of intrinsic non-homogeneity is also addressed. The appearance of domains where 
C is negative under charge control implies the occurrence of surface phase 
transitions under potential control. The characteristics of phase transitions in 
isolated and open systems, and the relationship between them, are considered. 
Some biophysical implications are discussed. 

1. Introduction 
The problem of negative differential capacitance (C), the so-called Cooper- 

Harrison (CH) catastrophe, arose in theoretical electrochemistry about two decades 
ago in studies of ‘molecular models’ of the compact layer at metal/solvent interfaces 
(Cooper and Harrison 1975). It initiated considerable interest, triggered in part by the 
sense that such behaviour is unphysical. It appeared later that the original CH 
catastrophe was a result of inconsistency in computation of the local electrostatic field 
acting on a molecular dipole. It did not resolve, however, the general question raised 
by those studies-the problem of the admissible sign of C. 

Later work (Feldman et al. 1986a, b, 1987, Partenskii et al. 1987) showed that the 
question of whether C can be negative is inextricably coupled to the nature of the 
thermodynamic constraints on the system, i.e. whether the electrode charge (q) or the 
cell potential (4) is the independent (controlled) variable. While C of the total interface 
is strictly positive for systems under +-control conditions where there can be charge 
(electron) exchange between battery (potentiostat) and electrodes, it can become 
negative for an isolated system when q is the controlled thermodynamic variable. The 
restrictions are even less demanding for any particular part of the double layer. For 
instance, either compact or diffuse layer contribution, C, or C,, can become negative 
even under #-control if total C > 0. 

The possibility that C <  0 raised questions of what happens when systems 
exhibiting this anomaly under q-control are switched to #-control (Feldman et al. 
1986a, b). In brief, the appearance of domains of negative C under q-control imply the 
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154 M .  B. Partenskii et al. 

existence of surface instabilities and phase transitions under #-control. These 
phenomena are becoming active areas of research. 

It is worth noting that a physically similar question was analysed a few years before 
the issue of negative capacitance ever arose in electrochemistry. Without explicitly 
commenting on the sign of C, Crowley (1973) proposed a very elegant model of 
membrane rupture based on the onset of electromechanical instability under 4- 
control. Even today, just as was the case with Galvani’s work on frog muscle 
contraction, biology can precede physics in the identification of important electrical 
phenomena. 

In this review we first discuss the difference between 4- and q-control. It is shown 
that both types of control are experimentally realizable. We also discuss the general 
constraints on the differential capacitance. The existing analysis unequivocally 
indicates that under &control C is strictly non-negative. To date attempts at the 
general analysis for isolated systems (a) have been restricted to so-called ‘a-control ’ 
with local (not just average, as in q-control) charge density fixed, and (b) have 
considered only the simple ‘primitive electrolyte’ models of interfaces. We show that 
improved and extended, Blum, Lebovitz and Henderson’s treatment (Blum et al. 1980) 
constrained as indicated, only imposes an upper bound on C-l and places no 
restrictions on its sign. 

In 53 we discuss different models which predicted, some of them falsely, the 
appearance of a C <  0 domain. Using the electromechanical analogues of the 
‘relaxing-gap capacitor’ models of the interfaces it is shown that C can become 
negative under a-control. 

The possible consequences of these results for both q- and &control are discussed 
in 54. We show that negative C computed under a-control can lead to a phase 
transformation under q-control resulting in the appearance of a non-uniform phase 
with both electronic and ionic density varying along the electrode plane. For the 
interfaces with sufficient lateral ‘rigidity’, the C < 0 domain can be detected. Finally 
we demonstrate that an additional, ‘potential-driven’ phase transition can exist if a 
system exhibiting regions of negative C under q-control are switched to qkontrol. In 
this transition the system obtains charge from the potentiostat (q changes discon- 
tinuously) while in the isolated system the fixed charge q can only redistribute itself 
in the plane. We use modified electromechanical models to illustrate these differences. 
This analysis indicates the importance of conducting theoretical and experimental 
studies of surface instabilities and phase transitions both under q- and +-control 
conditions; double layer properties and membrane electroporation provide examples 
where such issues must be important. The issue of capacitance anomalies and its 
relation to surface phase transitions is still a subject of substantial controversy and we 
will address some questions raised by recent analysis. 

2. Electrical control and general restrictions on the differential capacitance C 
To properly describe equilibrium electric properties of an interface requires careful 

thermodynamic and statistical mechanical analysis. We first formulate the ensembles 
for both types of electrical control and discuss the general statistical mechanical 
restrictions imposed on interfacial capacitance. 

2.1. Charge (4)- andpotential (&-control 
To clarify the issue of electrical control consider a highly simplified model of an 

electrochemical cell consisting of two electrodes, El and E,, in contact with the ionic 
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Negative diflerential capacitance at electriJied interfaces 155 

conductor (electrolyte). Each electrode comprises a macroscopic metal phase. We 
assume that the electrolyte is surface inactive, i.e. for the range of charge or voltage 
considered there is no charge transfer between the electrodes and electrolyte. Put 
differently, an applied voltage induces equilibrium redistribution of charge carriers 
(electrons in the electrode, ions in the electrolyte) and multipoles (induced electronic 
polarization, reorientation of polar groups in electrolyte, etc.) but not an electric 
current across the cell. 

Electrical control of the cell is maintained through the electronic subsystems of the 
electrodes (Parsons 1954). Either the number of electrons or their electrochemical 
potentials can be fixed externally. The electrochemical potential of the electrons in 
phase a is pa = pa-eq5,. The chemical potential pa (the Fermi energy) is completely 
specified by bulk properties of the (macroscopic) metal phase ; 4a is the electrostatic 
potential. To avoid complexities due to contact phenomena (‘Volta potential’) we 
assume both electrodes are made of the same metal and therefore have the same 
chemical potential. Then the difference of the electrochemical potentials equals the 
voltage: 

The conjugate electric variable to 4 is the electrode charge q. In studies of 
electrochemical interfaces it is convenient to scale properties such as C or q by the 
electrode surface area, S .  Thus we introduce a mean surface charge density 

and a differential capacitance (per unit area) defined as 

In q-control the electrode charge is the independent variable under external control 
and 4, the potential drop across the cell adjusts itself accordingly. To determine 4(a) 
requires supplying the electrode E, with small amounts of charge, dq, switching a 
contact with a charge source (battery) for a short period of time, 8t.f With no loss of 
generality the second electrode, E2, can always be grounded, automatically developing 
a compensating charge thus preserving global electroneutrality. The change in the 
potential increment, 64, is detected in the isolated system after the charge source is 
disconnected and equilibrium is established. This determines both the charging plot 
#(o) and the differential capacity, CQ = dq5Q/do; the superscript ‘ Q’ refers to quantities 
determined under q-control. 

We note here that in most theoretical studies of the double layer in the absence of 
specific adsorption the system is assumed uniform in the plane parallel to the electrode 
surface. The charge density is either presumed to be constant, as for an ion-dipole 

t The corresponding charge increment is 6q = J”tj(t)dr wherej(t) is the charging current 
between the battery and the electrode; the current is easily measured. 
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156 M .  B. Partenskii et al. 

plasma contacting the charged wall (see 93.2.1 for references) or to exhibit only 
atomic-scale variation when image-like screening effects are included (Rosinberg et al. 
1985, Hautman et al. 1989, Brodsky et al. 1991 and references therein; 93.1). In these 
cases a-control, where the local charge density on the electrode is fixed, is equivalent 
to q-control. Generally, only the latter is experimentally accessible because there is no 
way to keep the local density on the electrode fixed. To emphasize this difference we 
use the superscript Z for quantities calculated under a-control. Further discussion of 
the interrelation between a- and g-control is postponed to 94. 

Now consider #-control. Imagine for simplicity that each electrode is linked to its 
own potentiostat, 4 or P,, thereby fixing the value of the corresponding elec- 
trochemical potential. P, can be a large piece of metal, the potential of which is 
controlled by its charge qp2. We require only that charge fluctuations between 4 and 
E4 do not noticeably change the potential of 4. Thus, in &control the voltage is fixed 
and it determines the electric charge on the electrode. Such quantities are denoted by 
the superscript @ (a@, C@, etc.). In what follows, when constraints are obvious, the 
superscripts Q and @ are suppressed. 

The choice of control variable determines the ensemble to use in analysis. With the 
number of electrons fixed (q-control), the canonical ensemble is appropriate and the 
thermodynamic potential (per unit area) is 

(4) 
kT 
S 

AQ(a, T, V )  = --lnZQ((a, T, V )  

with the partition function 

ZQ(a, T, V )  = exp [ -pHQ(a, a)] d 0  (5) J(n, 
where H Q  is the Hamiltonian of the isolated system with the specified charge, 
p =  l/kT, and SZ is the volume of the configurational space.? In 4-control the 
grand canonical ensemble is applicable (Hill 1956) and the thermodynamic potential 
(again per unit area) is 

with the partition function 

Z@ = daZQ(o, Y) exp (o#pS) "I 

= S b a e x p  e - B ~ [ A Q ( ~ ,  ~ > - a # ] .  (7) 

= ? p a  e l d 0  exp -PIHQ(o, 0) - q#] 

Equation (7) relates the two ensembles. The major difference between them is that in 
#-control the system includes both the electrochemical cell (electrodes and electrolyte) 

t Note that in general the configurational space includes all possible fluctuations of the local 
charge density, a@), and the corresponding lateral fluctuations in the ionic subsystem, keeping 
the average value of a fixed. a-control refers to situations where these fluctuations are artificially 
suppressed. 
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Negative diferential capacitance at electrEfied interfaces 157 

and the potentiostats. The additional contribution -q4 added to H Q  in changing from 
an isolated to a 'global' system is simply the energy required to transfer charge q from 
the potentiostat to the electrode (see, for example, the discussion in Landau and 
Lifshitz (1960), Feldman et al. (1986b)). 

o plays the same role in the grand canonical ensemble as any other phase variable 
(e.g. dipolar orientations, ionic positions) imply adding an extra dimension to the 
configurational space. Thus the equilibrium thermodynamic potential accounts for all 
possible fluctuations of o (or 4). In the so-called 'thermodynamic' approach charge 
fluctuations are neglected and o is replaced by its most probable value (Hill 1956, 
Huang 1963, Landau and Lifshitz 1960). The corresponding free energy functional 
('Landau function', a@) in the global system is 

This can be formally derived from (6)  by replacing the partition function (7) by the 
function W(o) = exp - j ? S [ k -  4, the (un-normalized) probability that the electrode 
has charge q. 

From the known potential of the isolated system AQ(a, V ) ,  the equilibrium value of 
the charge is determined by the conditions 

and 

In the consistent statistical approach conditions like (9) and (10) are not needed; 
equilibrium is implicit in the partitioning and the mean equilibrium charge density 
((o)) on an electrode is given by 

With equations (9)-( 1 1) we can now analyse system capacitance. 

2.2. General restrictions on C 
First consider &control. Using (3) and (1 1) yields 

Here we suppress thermodynamic variables (e.g. T, P or V )  which are fixed. This 
equation is a typical relation for the susceptibility, aX/i3F, for systems with 
Hamiltonians of the forms H = H, - XF(Baxter 1982) (for applications to capacitance 
see, e.g. McCombie 1971, Nikitas 1991a, 1992a, Stafiej 1993). It is immediately 
apparent from (12) that differential capacitance cannot be negative under q5-control. 
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158 M .  B. Partenskii et al. 

This well-known stability condition, C' 2 0, was originally obtained by thermo- 
dynamic means (see for example the derivation by Landau and Lifshitz (1960) and its 
more recent discussion in Attard et al. (1992), Partenskii and Jordan (1993)). 

Under q-control there is no such universal relationship although some inequalities 
can be derived for a quite general model presuming in addition that charge density is 
uniform (a-control). Consider a parallel-plate capacitor of width L bounding a 
mixture of particles with multipolar moments (solvent) and charges (ions). The 
Hamiltonian of such a system can be expressed as 

H 2  = 2za2L-4naZxiqi+H' (13) 

where the index i represents all charges whether free (ions) or bound (solvent and 
solute multipoles); qi and xi are the charge magnitudes and locations respectively and 
H' describes interaction between the particles and is independent of o. Introducing 
this Hamiltonian in (4) we find : 

where 
v = 4 z ( o L - ~ q i x J  

= 4n( oL - [ /rpion(x)x dx] - Pylvent). (15) 

The integral term is the potential drop due to the distribution of ions in the cell while 
the last term describes the solvent's contribution, both for general points in the 
configurational phase space. 

The inverse capacitance, the second derivative of the AZ with respect to a, is 

(16) 
S 

k T  
(C")-' = 4zL--((v2)-(v)2). 

Therefore, for this class of models we obtain the general result 

(17) 
1 
- < 4nL. 
C= 

The last inequality means that the influence of the electrolyte reduces the potential 
drop between the electrodes which otherwise should be equal to 4zaL, thus reducing 
(C")-l. However, it puts no restrictions on the sign of Cz. The earliest attempt to 
derive general statistical mechanical constraints on CZ was due to Blum, Lebovitz and 
Henderson (BLH) who treated a purely ionic system ( B l m  et al. 1980). The original 
analysis was then extended to dipolar systems (Partenskii and Feldman 1989) 
correcting some errors in the original study. More recent discussions have been 
presented in Partenskii and Blum (1990)' Attard et al. (1992) (ionic systems) and 
Partenskii and Jordan (1 993) (molecular multipoles and ions). 

The critical feature of these models is that regions occupied by the electrode and 
electrolyte are distinctly separate so that their interaction occurs only through the 
uniform electric field 4x0. Whether more realistic models, treating e.g. solvent 
polarizability or the penetration of the metal's electronic wavefunctions into the 
region occupied by electrolyte, exhibit similar inequalities has not been established. 
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Negative digerential capacitance at electrijied interfaces 159 

Control of a thermodynamic variable implies that : (a) it can be directly altered by 
an external source; (b) after the change it remains fixed and measurements of the 
conjugate property (q  in the global system and # in the isolated system) are conducted 
after all relaxation processes are completed and equilibrium is re-established. Thus, 
the definition of the differential capacity (3) implies that one variable is controlled and 
another one adjusts itself in response and is determined at equilibrium. As discussed 
previously, both q- and #-control are valid experimental procedures. However, this 
has been questioned by different authors. Thus, Nikitas (1991a) suggested that using 
q as a control variable is ‘improper’, although his recent work (Nikitas 1994) indicates 
a change of mind. Stafiej (1993) suggests it is paradoxical to compute the capacitance 
of a system under charge control since this constraint insulates a system from charge 
exchange with its surroundings and ‘its capacity in the grand canonical sense 
vanishes’. It is true that fixing q requires computation via the canonical, not the grand 
canonical, ensemble. Nevertheless, the constructive definition of (3) (which leads to 
(12) in the case of #-control) holds and can be used to determine C by changing 0 and 
measuring the corresponding equilibrium 4. Computing capacitance under such 
constraints is no more paradoxical than computing the compressibility of a system by 
changing its volume and determining the corresponding equilibrium pressure. In 
addition, Stafiej (1993) asserts that capacitance calculations require explicit accounting 
of the electrical work required in exchanging charge between system and 
surroundings. We cannot agree. As long as the focus remains on equilibrium states, 
the thermodynamic path used in effecting the change of state (altering the control 
variable) is of no significance; q-control is in no way peculiar. 

Quite simply, both types of electrical control are valid and achievable. We stress 
this point because we believe both provide insight into the relationship between 
capacitance anomalies and phase transitions at electrified interfaces. 

3. Admissible sign of C: Capacitance anomalies at electrode/electrolyte interfaces 
The traditional treatment of the Double Layer (‘ dl ’) at electrode-electrolyte 

interfaces is based on its separation into two series contributions: the compact 
(‘Helmholtz’) layer and the diffuse (‘dif’) layer, so that the inverse capacitance is 

The problem of negative capacitance first arose in theoretical studies of C,  at 
metal/solvent interfaces in the absence of ionic adsorption. 

3.1. Origin of the problem-molecular models of the compact layer 
In the last thirty years the study of molecular models of the compact layer at the 

metal-solvent interface, originated by Mott and Watts-Tobin (Watts-Tobin 1961, 
Mott and Watts-Tobin 1961), has become a significant topic in theoretical electro- 
chemistry. Molecular or ‘dipolar capacitor’ models treat the surface layer of water 
molecules as a lattice of point or finite-size dipoles (for a review see Fawcett (1979), 
Marshall and Conway (1984)). Many studies have focused on the analysis of the 
response of such model lattices to electrode charging and comparison with ex- 
perimental values of the compact layer capacitance, C,(a), using the technique 
originally devised by Grahame (1947, 1954). A major stimulus for much of this work 
has been the ‘ Cooper-Harrison (CH) catastrophe’, the prediction of negative CH(o) in 
molecular models of the compact layer. 
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160 M .  B. Partenskii et al. 

3.1.1. General characteristics of a molecular capacitor ( M C )  
Consider a parallel-plate capacitor with a two-dimensional lattice of point dipoles 

in the gap (the gap width is d and lattice constant is a). The potential drop across the 
gap is 

where 

Here F, = 4no is the external field created by the plates of the capacitor, and the 
polarization, P, is N,(p,)  where N,  is the number of dipoles per unit area, a function 
of lattice geometry and a;  (. . .) denotes the statistical average. The inverse capacitance 
(per unit area) is 

4 = F,d+4, (19) 

4, = -4nP,. (20) 

where 

are the susceptibilities of the dipolar lattice. Further analysis requires determining the 
functional dependence of 0,) on o or 4. 

3.1.2. Ising-type molecular capacitor in Mean Field Approximation (MFA) 
We limit consideration to Ising-type n-state models with dipoles aligned normal 

to the lattice plane, p5 = ps,; the vector s, is limited to equally spaced discrete values 
between 1 and - 1. Since the appearance of a CH catastrophe does not depend on the 
number of states, n, we particularize to M = 2.t Each dipole induces a surface charge 
distribution in the plates of the capacitor which expels its electric field from the interior 
of the conductor. The local electric field acting on a specific dipole in the gap is 

F =  F , + F + F , ;  (23) 
the three contributions are the external field F, = 4xa, the field induced by the central 
dipole (F‘ = 4p, &3)/d3 - 4-8 lp,.d3), and the field & due to the remainder of the 
dipolar lattice and the associated images. This last term has been a subject of 
considerable controversy. To illustrate the source of the dispute, we investigate l$ in 
some detail. To compute it we use the MFA; all lattice dipoles but the one at the origin 
are assigned the mean moment (p,). In this approximation the contribution of the 
bare lattice (excluding images) to the local field, F:, is 

the sum runs over all lattice sites. Here J = p2/a3 is the interaction energy between 
parallel nearest neighbours; n! = a 3 4  r;: is the effective number of nearest neighbours, 

f Marshall and Conway (1984) showed that the critical issue is consistency in the 
description of the electrostatic field in the MC. This can be directly addressed in a simple two- 
state model. Further modifications such as treating the finite size dipoles, the possibility of their 
lateral orientation, ‘chemical’ ordering at 0 = 0, cluster formation and electronic polarizability, 
while making the molecular models much more realistic (see, for instance, Damaskin and 
Frumkin ( 1  974), Fawcett (1 978, 1979), Macdonald ( 1  954, 1987), Macdonald and Barlow (1962), 
Parsons (1975, 1980), Parsons and Reeves (1985), Schmickler (1983), Guidelli (1990)), have no 
qualitative influence on the basic CH problem. 
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Negative diferential capacitance at eIectriJied interfaces 161 

- 9 and - 1 1 for square and hexagonal lattices respectively (Topping 1927). Similarly 
the electric field of a screened lattice (where the effect of images on the effective number 
of nearest neighbours is treated) can be represented as 

For the two-state model the contribution F‘ is independent of the dipolar state and can 
be ignored (for both orientations s i  = l).? 

In this approximation the electrostatic energy per dipole is -p(F,, +&)sz and the 
average polarization is determined by the equation (Watts-Tobin 1961, Bockris and 
Reddy 1972) 

with E = (pF,/kT) -Jn,(s,)/kT. Using equation (22) yields 
<%> = tanh E(47 <s,)) (26) 

(27) P2N, 
= kTcosh2 (E) + JnL 

where E depends on fi, both explicitly and through (sJ. xa(fi,) is symmetric; it reaches 
a maximum when 4 = 0 and approaches 0 as F, + 00. 

Following CH (Cooper and Harrison 1975) we now consider the possibility of C 
becoming negative. From (21) this requires that 47qa > d which, from (27), is most 
likely when E + 0, i.e. when F, (or o) is small. Here we find 

3.1.3. Efective number of nearest neighbours and the CH catastrophe 
From (29) we see that C becomes negative when 

4na3Ns kT 
d J ’  

n, < 

This is the result known as the ‘CH catastrophe’. For a hexagonal lattice N F X  = 
2/(31/2a2) and for water in the compact layer at - 300 K, kT/J - 8 (Fawcett 1979). 
Thus we obtain 

Letting a = d (reasonable for this description of the compact layer) the ‘catastrophe’ 
condition for this MC is 

np < 14.2. (32) 

t It cannot be neglected even for n = 2 in electrostrictive molecular models (Feldman and 
Partenskii 1991) where d is variable. It also cannot be omitted in models with n > 2 because s; 
then depends on the dipolar state. Consider for illustration the continuous (infinite spin) model 
(Styller 1995). Then the susceptibility at low F, equals x = p2/(a(p)kT+n,J) where a(p) 
accounts for the contribution F’ in the local field (23). If F‘ is neglected, then a = a(0) = 3. With 
this contribution included a varies between a(0) = 3 and a(w) = I .  For all reasonable values of 
kT, a and p the effect of F‘ is not important. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



162 M.  B. Partenskii et al. 

CH suggested that due to the screening of the dipolar field (the effect of images) tzp 
is actually substantially smaller, < 1 1. In this case the inequality (32) is readily satisfied 
and at small electrode charges the capacitance becomes negative. The central issue is 
determining nL, the effective number of nearest neighbours. Some authors treat this as 
an adjustable parameter, while others employ various models and approximations (see 
Fawcett (1979), Guidelli (1990) for reviews). 

Before proceeding several points must be stressed. First of all the potential drop, 
4, is determined as a potential difference between planes x = 0 and x = d. This requires 
that both surfaces are equipotential, i.e. they are the surfaces of the ideal conductors. 
Consequently, any distribution of charge in the compact layer induces charges (or a 
surface charge distribution) in these planes. Therefore, the only proper way to treat 8 
(or nL) is to account for all ‘images’ of the dipolar lattice in both plates of the 
capacitor. Otherwise, the calculation of the electric field will not be consistent with the 
definition of the potential drop (19), which can give rise to serious ambiguities. Models 
of the compact layer, no matter how detailed, e.g. accounting for water polarizability, 
the possible presence of second and further absorbed layers, the finite size of the water 
dipoles (e.g. Guidelli (1990)), cannot clarify the issue of CH catastrophe unless image 
effects are treated consistently.? 

Another source of difficulty is that real MCs are of finite lateral area. However, the 
problem of a dipolar lattice between finite conductive plates has not been solved (a 
treatment of the local field of a dipolar lattice in a finite spherical capacitor has been 
outlined (Partenskii and Feldman 1989)). Thus theoretical analyses typically are 
limited to infinite MCs. Corresponding infinite electrostatic sums depend on the order 
of summation which requires very careful consideration. 

3.1.4. Summation problem in the local field computation 
To compute nL, two distinct limiting approximations have been employed 

(Partenskii and Feldman 1989). The first is the co-called ‘chain’ (c-) approach. Here 
each dipole plz  in the parallel-plate capacitor is substituted by an infinite dipolar chain 
normal to the x-plane, consisting of the original dipole and its infinite set of images. 
Definingf,,(p) as the x-component of the field of such a chain in the plane x = 0 at a 
distance p from site i, the dipolar field is 

Feh = 
i 

(33) 

For p > df,, decays asymptotically as e-2zp’d (Partenskii and Feldman 1989). Instead of 
a l / p 3  contribution of the dipoles as in the bare (unscreened) lattice, the screening 
arising in the c-picture leads to sharp exponential decay effectively decreasing n,. 
Direct calculations indicate that nE;h - 1.09 and n;yqch - 0.79 for d = a (as compared 
to the bare lattice values of - 11 and - 9 respectively). The third neighbour’s 
contribution is practically negligible. Comparing with (32) we see that the dramatic 10- 
fold decrease in the effective number of nearest neighbours inevitably leads to the CH 

t Both plates of the molecular capacitor are made of an ideal conductor. This can fairly 
imitate reality only in the limit of high ionic concentration in the electrolyte. Under normal 
conditions the ‘ionic plate’ of the surface capacitor is diffusive and extended in the x-direction. 
To improve the model one might want to account for this effect in calculating the electrostatic 
field. Nevertheless, whatever model of the ‘electrolyte plate’ is used, image effects have to be 
treated consistently within the framework of the model to obtain an unambiguous answer to the 
question of the existence of C < 0. 
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Negative diflerential capacitance at electrfied interfaces 163 

catastrophe. This agrees with Schmickler’s suggestion (Schmickler 1983) that for a 
lattice with sufficiently large spacing a, the dipoles are practically independent and the 
CH catastrophe is unavoidable. 

This intuitive picture collapses if the co-called ‘plane’ (p-) approach is used. Here 
images are represented by infinite dipolar lattices, and the fields of the lattices are 
summed up. It should be stressed that for any finite lattice array the fields calculated 
by either the c- or p-summation methods must be and are equivalent. To illustrate the 
difference between these approaches for the infinite lattice surround the central dipole 
by a circle of radius R % a. Because the chain fields converge rapidly, the internal 
contribution to 4 from the dipoles occupying the area p < R is equal to F:h, 

In the chain picture the contribution from p > R naturally vanishes. To determine this 
outer contribution, FP‘, in the p-approach, note that at distances large compared to 
a the lattice is effectively continuous and may be treated as a uniform dipolar layer 
with polarization P, = N,(P,). Therefore in the p-approach the field FYt arises from 
a stack of infinite dipolar layers (the original one and its infinite set of images) with 
coordinates p > R, xi = id (i = 0,  ’. 1, f 2, . . .), and as long as R + (d, a) (Partenskii 
and Feldman 1989) 

which, with (25), yields a relation between the effective number of nearest neighbours 
calculated on the basis of the c- and p-approaches: 

Comparison with (30) now demonstrates that in the p-approach the capacitance is 
always positive while the c-approach leads to the CH ‘catastrophe’. Thus the 
appearance of C < 0 is intimately related to the way in which calculation is done. The 
following arguments demonstrate that only the p-approach is consistent with 
equations (19)-(22). 

Consider 4. By construction the field of each infinite chain leads to a potential drop 
of exactly zero. Regardless of the number of chains, even in the infinite limit &h = 0. 
On the other hand 

4ih = J- F;:dx. 

Performing the same integration on FZ1, equation (36), it follows that 4;’ = -471P,. 
Therefore, the total potential (19), is 

d i 2  

d/E 

&h = 4 ~ 0 d  
= 4wad-4nPx. 
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1 64 M .  B. Partenskii et al. 

In other words, only the p-approach agrees with (19) and (20). Does it mean that the 
c-approach is always wrong? Not at all. It simply refers to a very different physical 
situation. Consider a finite capacitor with disc plates of radius R confining a dipolar 
lattice of radius R’. Initially they are equal. Suppose that both radii increase at fixed 
N,, and approach infinity. Consider two cases: (a) R’ /R  = 1 and (b) R / R  = O(l/R’). 
In both cases the mean density of dipolar moment relative to lattice area is Pp = 
N, b,). But when averaged over the area of the plates P,”’ = P‘,“ = N,(p,)  in (a) 
and P;’ - R 2 / R 2  -+O in case (b). It is now clear that the p-approach is related to 
(a), when both lattice and plates have the same ‘strength’, while the c-approach 
corresponds to (b) where the lattice, being large (even infinitely large), has vanishingly 
small strength compared to the plates and P, is effectively zero. In this sense both 
approaches agree with (19) but in c-summation the average polarization is actually 
zero. Both limiting cases can be reproduced in finite system calculations. The p- 
approach describes a lattice occupying the whole area between the plates while the 
c-approach describes a lattice ‘island’ large compared to a and d but vanishingly 
small if compared with the area of the plate. 

The local electric field in the MC, equation (23), can now be represented as 

- 4 - - + p c h  
d 

with o, = PJd. This expression, with slight modifications (e.g. sometimes neglecting 
Ch which, as already seen, is justified, especially for a > d),  has been used by a number 
of authors (Watts-Tobin 1961, Mott and Watts-Tobin 1961, Levine et al. 1969, 
Marshall and Conway 1984, 1987, 1992). This approach has been criticized by Nikitas 
(1987). In a gedanken experiment he considered a process in which dipoles, previously 
separated by large distances so that interaction can be neglected, approach each other. 
Nikitas suggests that ‘the term 4x0, begins to contribute when the dipoles approach 
each other ... Therefore we have to conclude that the term 4md is related to the 
dipole-dipole interaction energy only’. On the basis of such arguments he suggests 
that a, in (40) should be substituted by a,/2. As we have seen, bringing dipoles 
together only contributes to the appearance of FCh ; the uniform contribution being an 
intensive property (Marshall and Conway 1987), cannot be changed in this process. 
Assume, for instance, a ‘diluted’ dipolar lattice (the first stage of the process (Nikitas 
1987)). Then we take N dipoles and start bringing them closer together keeping all 
other dipoles fixed. As is clear from the previous discussion, this process does not 
influence the contribution 4x0, (,Out is fixed by the whole bulk of the lattice); only the 
local dipole-dipole interaction is affected. 

Where does the additional uniform contribution come from? How does it happen 
that with a fned charge density IS on the plates of a capacitor the local field is 
determined by the smaller density o-a,? Where does part of the charge density 
disappear? To answer this question consider another gedanken experiment based on 
the discussion of MacDonald (1954). Suppose at the outset the dipolar capacitor is 
under the fixed voltage 4 = 0. The lattice induces a non-uniform charge distribution 
~ ( y ,  z )  in the plates. The average charge density can be defined as 8” = N,  J o(y,  z )  
where the integral is taken over the unit cell. On the other hand it can equally well be 
identified as the density ‘screening’ the dipolar lattice smeared over the plane. It means 
that 8” = - PJd = a,. Now, disconnect the MC from the potentiostat and charge its 
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plates to an overall density B .  To do this requires increasing the average density by 
B - B ~ .  Now the picture is clear ! The charge of the electrode consists of two parts : non- 
uniform, with mean density B&, responsible for the term FCh in the local electric field, 
and a uniform contribution B -  od responsible for the potential drop 4, equation (19), 
and for the major part of the local field (if a d ) .  Analysis of the finite spherical MC 
(Partenskii and Feldman 1989) yields similar results. Note that retrospective 
justification for the use of the MFA is given by the fact that the nearest neighbours’ 
contribution is small compared to the mean field term. 

It is now clear that CH catastrophe arises as a result of inconsistency in the 
treatment of the electric field and the potential drop in the molecular capacitor. Does 
it prove that the appearance of C < 0 is physically impossible or unrealistic (Cooper 
and Harrison 1975, Parsons and Reeves 1985, Marshall and Conway 1984, Borkowska 
and Stafiej 1985, Macdonald 1987)? In the following sections we show that the answer 
to this question is no and that it gives rise to a number of exciting problems and 
phenomena. 

3.2. Problem of C < 0 beyond the molecular models: Ionic and electronic 
contributions to the double layer capacitance and relaxing gap capacitor’ models 

3.2.1. Negative capacitance in the theory of the diguse layer 
The theory of diffuse layer capacitance Cdi, is traditionally based on local statistical 

models where ionic charge density is a local function of potential. For such models Cai, 
can never become negative (Partenskii et al. 1987). The Gouy-Chapman (GC) model 
(Bockris and Reddy 1972) for a 1 : 1 electrolyte is illustrative : 

C:: = a(b + B ’ ) ~ ’ ~  

with a = q/2kT, b = 2t lkT~/z ,  where 8is the ionic concentration in the bulk electrolyte 
and E is the bulk dielectric constant. Another feature of GC-type models is that pl(r)  
is always a monotonous function of the coordinate. 

Very different results are found in studies that go beyond the local statistical 
approach. Early analyses of ‘primitive ’ models (uniform continuum solvent) of the 
electrical double layer at charged surfaces using either the hypernetted chain 
approximation (HNCA) at high electrode density (Henderson et al. 1979, Carnie et al. 
1981) or the mean spherical approximation (MSA) at high ionic concentration (Blum 
1977) indicated that C,,, might possibly become negative. These results were attributed 
to noticeable oscillations found in the computed ionic density profiles, observations 
which were confirmed shortly thereafter by Monte Carlo simulation (Torrie and 
Valleau 1982). Rather surprisingly, this work did not stimulate further analysis of the 
possibility that C < 0 and its possible consequences, probably because of the apparent 
derivation of a general result that seemed to demonstrate the impossibility of negative 
differential capacitance for the primitive model double layer under o-control (Blum et 
al. 1980). Since negative C is initially counterintuitive, the BLH resdts apparently 
demonstrating its impossibility were readily accepted; they were used later (Schmickler 
and Henderson 1989) to veto any appearance of C“ < 0 even for double layer 
computations conducted far beyond the primitive model of BLH (Kim et al. 1989). 

Later studies (Partenskii and Feldman 1989, Partenskii and Blum 1990, Attard et 
al. 1992, Partenskii and Jordan 1993) (see also discussion in $2.2) revealed subtle 
errors in the original BLH analysis. A correct treatment leads to equation (16) with no 
limitations on the sign of Cdi, calculated with fixed o. Recent research provides several 
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166 M .  B. Partenskii et al. 

examples that negative aq5/ao can occur in limited (T domains. Examples include a 
Monte Carlo simulation of the electrical double layer in a primitive model of 1 :2 
electrolytes (Torrie 1992) and an integral equation analysis of the influence of ionic 
polarizability on the properties of the double layer (Wei et al. 1993), which indicates 
that the appearance of a negative slope in q5,,(a) plots reflects the ‘true behaviour of 
plausible theoretical models’. 

3.2.2. Metal electrons in double layer theory and the negative C problem 
The problem of the allowed sign of the differential capacitance becomes even more 

apparent in the microscopic approach which considers the metal electrons’ cont- 
ributions to the properties of the double layer. To begin we summarize some important 
features. We introduce centroids of charge located at the electrode (electrons, e) and 
in the electrolyte (ions, i) characterizing the effective positions of the corresponding 
‘plates’ of the interfacial capacitor and determined (see e.g. Lang (1973)) as centres of 
gravity of induced charge density profiles, 6n;,(x), 

where o, = -oi = o; x, = 0 corresponds to the electrode surface location in the 
‘perfect conductor’ approximation. 

Until the early 1980s metals were usually described in double layer theories using 
‘sharp boundary’ models (SBM). The simplest (and most popular) is the ‘perfect 
conductor model’ of classical electrostatics. Near the plane surface of such a conductor 
the potential changes linearly with distance and attains fixed values crossing the 
boundaries. Modification of this model was generally based on a non-self-consistent 
Thomas-Fermi type approach originated by Rice (Rice 1928, Macdonald 1964, Tsong 
and Muller 1969, Macdonald et al. 1980). Its applications to double layer analysis gave 
rise to some ambiguities including the co-called ‘Rice paradox’ (Kornyshev and 
Vorotyntsev 1981, Kornyshev 1985). 

The transition to the modern microscopic theory of the double layer was stimulated 
by the development of the self-consistent theory of metal surface electron properties 
and especially the studies of surface electronic screening of the electrostatic field (Lang 
1973, 1983, Partenskii 1979, Feldman et al. 1986b, Kornyshev 1989). Three results of 
this approach are important for our purposes. 

1. Near IS = 0, x, is positive, in the range of 0.5 to 1.2 A for different metals. 
2. The ‘electron plate’ moves with charging, approaching the metal interior for 

positive values of o and moving outside it if o < 0. 
3. Depending on IS, the tail of the metal surface electron charge distribution, which 

projects into the compact layer, influences the equilibrium location and 
polarization of solvent molecules in the compact layer.? 

The external location of the ‘electron plate’ at CT = 0 (x,(O) > 0) caused by the 
screening of the external field by the electron ‘tail’ outside the metal naturally resolves 
the problems raised by the application of SBM, including the Rice paradox. The 
dependence of the surface electron distribution on charge and its influence on the 
properties of solvents adds new sophisticated features to the characteristics of the 

t It also affects the location and partial charge of ions in the presence of specific adsorption. 
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Negative diferential capacitance at electrijted interfaces 167 

compact layer lacking in previous solvent-oriented models. The study of these 
phenomena originated by the pioneering work of Badiali et al. (1983a-c) represents a 
new era in physical electrochemistry and has been carefully reviewed (Schmickler and 
Henderson 1986, Feldman et al. 1986b, Kornyshev 1989, Amokrane and Badiali 

Negative C, was first given serious consideration in this context in Partenskii and 
Vorobjev (1984). This analysis addressed the problem of abnormally high C in 
contacts of some metals (Au, Pt) with solid electrolytesilver ion conductors (e.g. 
Ag,RbI,, U-AgCl, AgBr). According to the traditional view the total C,, could not 
exceed the ‘ compact ’ contribution : 

1993). 

C,, < C, (conventional condition). (43) 

In the SBM approach (Macdonald et al. 1980) C, is estimated as 

Here E, is a compact layer permittivity and x, is the effective width of the compact 
(‘Stern’) layer. For the systems considered E, - 3, xH - 1.26 A (the ionic radius 
for Ag+) (Macdonald et al. 1980). The estimates of C, based on these data lead to 
C 5 20 pF cm-2, a result more than an order of magnitude less than the experimental 
values (Raleigh 1976, Remez and Chebotin 1984). Early attempts at resolving the 
problem presumed either effectively ‘shortening’ the compact layer by electron 
tunnelling from electrode to Ag’ ions (Macdonald et al. 1980) or introducing ionic 
profiles with ‘ over-screening’ either due to ionic density oscillations (Dogonadze and 
Chizmadzhev 1964) or to ‘ superequivalent’ adsorption (Raleigh 1976). 

Displacement of the ‘ electronic plate ’ due to charging naturally resolves the 
problem. C, is then represented as 

EH 

X, -x, - a(dx,/dg) 
4nC, = (45) 

xe(cr) has been calculated for different models of the compact layer (Partenskii et al. 
1981, Partenskii and Vorobjev 1984). In all cases C, reaches a vertical asymptote and 
becomes negative at moderate cathodic charges corresponding to the condition 
x, + o(dx,/dcr) 2 x,. It is important that when C, crosses the asymptote, the capacitor 
gap is finite and positive, xH-x, > 0, in clear contradiction with the conventional 
view, (44). It also shows that (43) does not hold, and that the total C,, can exceed C,, 
results resolving the above-mentioned contradictions. 

On the basis of these findings calculations of Feldman et al. (1985) were reexamined 
(Feldman et al. 1986b, 1987) and it was found that the narrow domains with C, < 0 
were originally overlooked since an overly large cr step was chosen. The possibility of 
C,  < 0 also follows from self-consistent quantum mechanical calculations (Halley et 
al. 1985, Halley and Price 1987). In a study by Badiali et al. (1983a) the anomalous 
domain was missed because an overly large gap between the electrode and the solvent 
molecules was introduced and its dependence on cr was ignored. In other instances the 
negative C branch was suppressed as unphysical (Schmickler and Henderson 1984, 
1986) (see also Kim et al. (1989), Schmickler and Henderson (1989) for discussion). 
The clear illustration of the appearance and admissibility of C,, < 0 when the charge 
density (T is fixed is provided by the ‘ relaxing-gap capacitor’ models considered below. 
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168 M .  B. Partenskii et al. 

3.3. Electromechanical models of charge-induced relaxation in the double layer 

Quite generally the potential drop across the double layer can be represented as 
3.3.1. The double layer as a relaxing-gap capacitor 

fp = 47Cf7[Xi(O) -x,(o)] -4;nP, (46) 
where Px is the overall polarization of the solvent across the interface (including the 
contribution of induced and permanent dipole moments). Then, using (3) we find 

dl dPx 
do da 

(4nC)-1 = l(a)-o--- (47) 

where I(o) = xi(a) - xe(a) is the effective gap of the interfacial capacitor. From these 
equations the double layer is described as a capacitor with a relaxing gap l(o). The 
effects associated with the relaxation of the effective gap are well-known. In particular, 
they determine the C(c)  behaviour in metal-semiconductor contacts and in p n  
junctions (Sze 1969) and in the theory of the diffuse layer at metal-electrolyte 
boundaries (Bockris and Reddy 1972). As mentioned previously, the use of GC-type 
models in the vast majority of studies suppresses the possibility of C < 0. 

3.3.2. Electromechanical models. Admissibility of C < 0 under a-control 
Consider an imaginary attempt to alter the equilibrium electron and ion density 

profiles causing the displacement of x, and xi from their equilibrium positions. The 
corresponding increase in energy (e.g. in the value of density functional used to 
describe electron-solvent systems (Feldman et al. 1985, Halley et al. 1985)) can be 
expressed through the effective restoring force opposing the variation of I from its 
equilibrium value. In turn, the restoring force can be expressed through some effective 
elastic constant. This is analogous to an ‘elastic capacitor’-a system with some 
(generally, anharmonic) coupling between the ‘plates’ and a gap varying with 
charging (Partenskii and Kim 1986, Feldman et al. 1986a, Partenskii et al. 1987). A few 
comments are necessary. 

The ‘elastic capacitor’ is designed to illustrate and explain capacity anomalies 
that appear in microscopic simulation in terms of mechanical or thermo- 
dynamic equilibrium. The advantage of these models is their exact solvability 
while in microscopic calculations there is always room for doubts (and as seen, 
doubt often prevailed over the computational evidence). 
The ‘elasticity’ in these models can be related to very different interactions in 
microscopic prototypes. It includes classical and non-classical (exchange) 
electrostatic forces in ion-electron systems, entropic (‘lattice gas ’) effects, 
Lennard-Jones and van der Waals-type interactions between solvent molecules 
and metal, etc. In the same way, ‘interfacial relaxation’ involves displacement 
of the electronic plate, shift in the equilibrium position of adsorbed molecules, 
redistribution of ions and solvent molecules in electrolyte, variation of the area 
of interface, etc. Thus, the use of macroscopic terminology should not create the 
illusion that models are unrelated to a real interface (in the same way as a 
macroscopic elastic constant can be expressed through the microscopic 
properties of matter). 
Electromechanical models are not designed to reproduce all features of 
microscopic behaviour. For instance, small negative charging causes expansion 
of the surface ‘gap’ pushing away the monolayer of water molecules adjacent to 
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the electrode (Feldman et al. 1985, Halley et al. 1985). Also, at large anodic 
charges the gap increases because x, continues moving inside the metal 
(approaching the fixed slope determined by the sum rule of Theophylou (1972)) 
while the ‘ionic plate’ slows down due to interaction of waters with the metal 
ions’ hard cores, and, possibly, due to ‘lattice saturation’ effects in the diffuse 
layer. These models were invented to illustrate phenomena typical of existing 
microscopic models in certain charge ranges, and to focus attention on their 
possible appearance in a wide class of models. 

Consider an isolated capacitor the plates of which can move with charging 
(‘relaxing capacitor’ (RC)). We write its energy in the form 

E(o, 1) = E,,(I) + 2710~1, 1 > 0 (48) 
where the first term is the coupling energy, and the second the electrostatic energy. The 
conditions for stable equilibrium of an isolated RC are 

aE dEo 
dl 

- al = -+2na2 = 0 (49) 

The potential drop between the plates is given by 

4 = 4nal(a) (51) 

where l(a) satisfies equations (49) and (50). The inverse differential capacitance is 
(Partenskii et al. 1987) 

4na2 
d2Eo/dlz ’ 

(4nC-1 = l(0) - 

Suppose now that charging causes gap contraction such that 1 + 0 as a approaches a 
finite value a. This condition is sufficient for C to become negative in some charge 
range, because it is negative at a 

(4n.c)-1 = -471-2 O / % < O .  

While sufficient, this condition may not be necessary. 
Consider the ‘elastic capacitor (EC)’ (Feldman et al. 1986a) with 

k E - -(l-l0)’ 
O - 2  (53) 

designed to illustrate the origin of C c 0 in a density-functional model of metal/solid 
electrolyte interface (Partenskii and Vorobjev 1984). In dimensionless units 

and using the equilibrium conditions (49) and (50), we find 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



170 M .  B. Partenskii et al. 

It follows that C-l < 0 for Is1 > so = (2/3)lI2. At the same time a2w/aZ2 = 1 > 0 which 
means that the system is stable for any charge Is( < 2”’ which corresponds to I3 0. In 
other words, a negative C branch exists in the range 2 l I2  2 s > (3/2)’/’. 

We can now show that the condition that I -+ 0 as 0 + d is not necessary. The 
system can be prevented from direct contact between the plates by putting a ‘block’ in 
the region 0 < zSL < Q so that z = 0 ( E  = 0) is not accessible. Nevertheless, the nega- 
tive C branch still exists. 

We note here that the first elastic capacitor model was constructed by Crowley 
(1 973) to account for electrical breakdown of bimolecular lipid membranes. The 
coupling energy for his model can be cast in the form 

0 zlnz-z+ 1 (56) ,,,Crowley = 

if kzi in (54) is substituted by Yz, where Y is Young’s modulus. Crowley did not discuss 
the differential capacitance of his model membrane. But it can easily be shown that in 
his model C becomes negative for Is1 > I and z < exp (- 0-5) - 0.6 1. 

The ‘anomaly ’ appears naturally for various types of coupling, involving different 
kinds of anharmonic behaviour (Feldman et al. 1986b, 1987, Partenskii et al. 1987, 
Partenskii and Jordan 1993). To interpret the results of microscopic modelling of the 
metal-solvent interface (Feldman et al. 1985,1987) anharmonic models with bistability 
are useful. Bistability arises, for example, when there is a cubic term in the 
dimensionless energy wo 

( z -  I)* a(z- 1)3 +- wo = - 
3 2 (57) 

for a > 0.5. The RC loses stability at lscrl = (2a)-’I2 and the relaxing plate jumps to a 
new position defined by the ‘block’. This peculiarity is useful for discussing the 
interrelation of instabilities in isolated and open systems. Figure 1 illustrates the state 
diagram for the anharmonic relaxing capacitor. It shows that the ‘softening’ of the 
bond (a > 0) leading to bistability also facilitates the appearance of C < 0 (Iso[ 
decreases) although the negative branch exists over a wide range of a including a c 0. 

Figures 2(a) and 2(b) compare the extremals, ~(s), and the capacitance, C(s), for a 
simple EC, (55), and an EC with an additional short-range repulsion between the 
plates giving rise to ‘bistable’ extremals (see discussion 54.2.1). Overall, negative 
capacity, typically appearing in microscopic ‘electronic’ models of the compact layer 
and in some non-local statistical models of the diffuse layer, also arises in a variety of 
electromechanical models. Being exactly soluble, these latter prove that in isolated 
systems C can be negative for stable systems under fixed r~ conditions. 

3.3.3. Models coupling diflerent types of relaxation 
3.3.3.1. Molecular capacitor with the relaxing gap. As shown in $3.1, consistent calcu- 
lation of the local field in the MC does not allow C to become negative. On the other 
hand, divergences and negative values of C are typical for the relaxing gap capacitor. 
What happens if these two models are combined? To investigate this, an elastic 
capacitor mode1 was combined with an Ising-type molecular capacitor (Feldman and 
Partenskii 1991), a unification already proposed in Watts-Tobin’s paper (Watts-Tobin 
196 1) introducing the molecular models. He noticed that possible electrostriction of 
the water layer can also affect the double layer capacitance. After more than thirty 
years of research all that needs to be added is noting that effective gap relaxation is not 
so much a result of compressibility, but a combined effect of the shift in water’s 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Negative drerential capacitance at electrijied interfaces 171 

I 
I 
I 

I , ,  I 

-2.0 0.0 2.0 4.0 0.0 

Anharmonicity constant, a 

Figure 1. The influence of the anharmonic contribution to the interplate coupling w,,, equation 
(57), on the stability and negative capacitance in the elastic capacitor. Curve 1 ,  s,,, 
indicates the locus of points where the RC is physically unstable and undergoes collapse 
from a finite z to z = 0; this curve terminates at the point where the onset of this instability 
requires zero interplate separation. Curve 2 ,  so, indicates the locus of points where C-' = 
0, i.e. the conditions for the appearance of a negative C branch. As is apparent, increasing 
anharmonicity facilitates the appearance of a negative C branch (it requires smaller s). 

equilibrium position at the electrode and the displacement of the electronic 'plate' x, 
(Price and Halley 1983, 1995, Halley et al. 1985, Feldman et al. 1985, Halley and Price 
1987, Feldman et al. 1987). 

Neglecting F;h in (40), which is justified for a > d (§3.1), the Hamiltonian (per 
unit area) can be represented as (Partenskii and Feldman 1989) 

P 2  k P2 
1 2  1 3  

Hz(a,  1 )  = 2770~1- 4710P, + 271 3 + - ( I -  lo)' + V,,,(1) - 2[(3)n -. 

The last contribution is the interaction of dipoles with their images and Fen is the 
short-range repulsion between the plates preventing them from collapsing. The 
corresponding free energy functional was minimized both with respect to the 
polarization (s,) and the gap width I for constant (T and T, with the result that 
capacitance divergence and a negative branch appear at all temperatures ; increasing 
T shifts the critical point toward lower charge. 

3.3.3.2. Combined efect  of electronic and GC-type ionic relaxation. As mentioned 
before, with electronic contributions taken into consideration C, can become negative 
for moderate ranges of charge both for metal-solvent and metal-solid electrolyte 
interfaces. At the same time the diffuse layer capacitance treated in GC-type local 
statistical models is always positive (63.2.1). The natural question is whether the 
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0.6 

- 
V 

0.3 

0.0 
0.0 S' 1.5 sii 3.0 

Reduced charge density, s 

Reduced charge density, s 

Comparison of reduced potential extremals, ~(s),  and the corresponding reduced 
capacitance, C(s), for two elastic capacitor systems under q-control as functions of the 
reduced surface charge density, s. Case 1 (dotted lines) corresponds to the simple EC, 
where no constraints oppose the tendency of the capacitor plates to attract one another, 
and the plate separation can approach 0. Under &control such systems are always 
metastable; a fluctuation can cause a transition to the unstable higher s region. Under q- 
control both capacitance domains are accessible. Case 2 (solid lines) illustrates the results 
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60.0 I 
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d 
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-30.0 ‘ I 
-20.0 Go 0.0 20.0 

Surface charge density 0, K/C.~* 

Figure 3. Plots of differential capacitance, C, as functions of surface charge density 0. Curve 
1 presents typical data for Au/AgCl contact (Partenskii and Kharkats 1988) illustrating 
the appearance of a region of negative C; it accounts for the influence of electronic 
relaxation phenomena. Curve 2 describes the behaviour of the diffuse layer; the 
capacitance is positive everywhere. Curve 3 is analogous to curve 1, except that relaxation 
is not included; the interface is described in terms of a classical ideal conductor (see text) 
and capacitance is again positive everywhere. 

anomalies in C ,  can overwhelm the GC diffuse layer contribution, leading to 
anomalies in the total capacitance in a reasonable range of charge. 

For this purpose the metal/solid electrolyte model (Partenskii and Vorobjev 1984) 
has been reconsidered (Partenskii et al. 1986, Kim et al. 1988, Partenskii and Kharkats 
1988). The most general approach to the description of the diffuse layer was used in the 
last of these papers and implies the possibility of field-induced phase transition in 
superionic crystals (Gurevich and Kharkats 1977). 

The general result of these calculations is that in spite of the ‘buffering’ role of the 
diffuse layer, in all models considered electron relaxation and related effects caused the 
appearance of the vertical asymptote in C(o) in the range -25 < o < 0 pC cm-2 which 
is readily achieved. A typical curve calculated for Au/AgCl contact is presented as 
curve 1 in figure 3. For comparison the result for the same model of C,, (curve 2) is 
presented. Curve 3 shows the total double layer capacitance if C, is described in the 
classical ‘ideal conductor’ model, for which electron relaxation is neglected. Non- 
classical phenomena give rise to the negative C, domains which can overwhelm the 
diffuse GC-type contribution. 

of a similar model in which short-range interplate repulsion opposes the capacitative 
collapse. Here behaviour is vastly different. Increasing c under +-control induces a phase 
transition, indicated by the Maxwell construction connecting c(s’) and ~(s’’). Under q- 
control the states between s’ and s” are accessible and negative Cis realizable. Capacitance 
diverges at the extremals of v and is negative in the intra-extremal domain. 
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174 M .  B. Partenskii et al. 

4. Observability of C < 0, surface instabilities and phase transitions 
We address now the very intriguing question of whether and under what conditions 

C < 0 can be detected in isolated and open systems. As we saw in 52, this question is 
closely related to the stability of interfaces. Here we investigate this relation further. 

4.1. Capacitance anomalies and phase transitions under q-control 
As mentioned in $2, in most theoretical studies of the double layer the interfaces 

are considered uniform in the yz  plane on a multi-atomic scale. We have seen from 
$53.2 and 3.3 that very different models treated under a-control lead to domains 
where C < 0. Electromechanical analogues such as the elastic capacitor prove that an 
isolated system with C < 0 can be stable. 

The plates of the relaxing capacitor in the electromechanical models are rigid. This 
forbids lateral variation of the gap width, x(r,), ( r ,  = [ y  ; z ] )  and a corresponding local 
variation of the charge density, a(r,) (needed to maintain the conductive plates as 
equipotentials).? For such models a- and q-controls are equivalent. The ‘plates’ of the 
interfacial capacitor, however, are not rigid. A typical example is the ionic distribution 
in an electrolyte ($3.2) or the flexible boundaries of lipid bilayers in studies of 
electroporation (Crowley 1973, Chizmadzhev 1992, Freeman et al. 1994). Thus, a 
complete stability analysis requires checking for the possibility of ‘symmetry 
breaking ’, a spontaneous appearance of structure in the yz  plane and corresponding 
lateral variation of cr. If this can occur then the cr-control description is no longer 
applicable and a general q-control treatment is required. We investigate this using a 
modified electromechanical model. 

4.1.1. Stability of relaxing capacitors switched in parallel 
Consider two elastic capacitors in parallel with surface areas Sl and S,, equal 

elastic constants (per unit area) and equal initial gaps z,(O) = z,(O) = 1 (dimensionless 
units, equation (54), are used). The energy of this system (per unit area) is 

P1 P2 P1 2 PZ 2 

2 2 2 2 w = - (Zl - 1)* +- (z ,  - 1)’ +-s, z1 +-s, zz 

with p l , ,  = SI,J(Sl + S,). In an isolated system the total charge is fixed. Introducing 
the average charge density s we get the neutrality condition 

P l S l  f P 2 s 2  = $. 

The equivalence of the potentials gives 

s, z1 = S‘ z,. 

With these conditions taken into consideration the energy can be represented as a 
function of only two variables, z1 and z ,  

P1 P s2 ZIZZ 

2 2 2P2Zl+PlZ,‘ 
w =-(z1-1)2+~(z,-1)2+- 

t If a more realistic model is used (43.2.2) then local variation of the electronic density, 
ne(x,rs), is possible and can cause some local variation of the effective gap I of the surface 
capacitor. A corresponding contribution to the energy functional E[n,] will describe the 
‘cost’ of such fluctuations. This effect can be important if 1 is comparable to atomic distances. 
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In the uniform case (where the system relaxes as a whole) the solution is known (55) 

S2 

2 
z1 = z2 = 1 --. (59) 

Pursuing our main goal we now study the stability of the uniform solution. The 
corresponding stability conditions are 

w:lzl > 0 (60) 
qz, w:& - [CJ ’ 0 (61) 

Using (58) and (59) we find that the uniform solution is stable only if 

Comparing with (55) we find that the stability range corresponds to the region where 
C > 0. The critical point so (C(so) = co) corresponds to the absolute loss of stability. 
Somewhere before the critical point (s 6 so) the system becomes metastable and can 
undergo a transition to a new state due to a finite fluctuation (Hill 1956). 

We now see that while C becomes negative for a rigid EC in the stable domain, it 
is absolutely impossible if the mechanically uncoupled capacitors are switched in 
parallel. Reality is somewhere in between. The non-uniform redistribution of charges 
exacts an energy penalty similar to the magnetic non-uniformity energy determining 
the shape of magnetic domains (Landau and Lifshitz 1960), or the surface energy 
contribution in the theory of nucleation (Burton 1977). We can mimic this in our 
model by introducing an additional mechanical coupling between the two capacitors, 
with 

The stability condition is now 
= 03a(z, -z$. (63) 

s 2 < -  1+ 2a ). x a+3P,P, 

For a = 00 the system is stable for s < 21/2 and, correspondingly, for all z > 0. This is 
equivalent to the rigid-plate capacitor considered in $3.2. For any finite a the 
absolute loss of stability occurs for s > so. In other words, the negative branch 
becomes observable; the width of this domain grows with increasing the effective 
lateral ‘rigidity’ of the plate. 

The stability condition (62) corresponding to the limit of ‘soft’ interface agrees 
with the results of the thermodynamic analysis of Nikitas (1991b) where a non- 
uniform contribution due to the boundary between two phases was not considered (see 
equations (31)-(36) of that paper). On the other hand, the conclusion previously 
derived (Feldman et al. 1986a, Partenskii et al. 1987, Partenskii and Jordan 1993) that 
C can unconditionally become negative in an isolated system is only correct under ,T- 

control. In other words, it is only applicable to ‘rigid-plate’ systems and does not cover 
the general situation. In reality the domain C < 0 can exist and its width is determined 
by the ‘lateral flexibility’ of the interface which can be described by interfacial tension, 
mechanical coupling, energy of non-homogeneity, etc. 

Figure 4 depicts a representative charging plot v(s) of mechanically coupled elastic 
capacitors in parallel. The first vertical step corresponds to a transition from a uniform 
to a non-uniform phase, when z, and z2 become different. The second step is the 
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Figure 4. A representative plot of the reduced potential, u, as a function of the average charge 
density, s, for mechanically coupled elastic capacitors in parallel. There are two regions 
of negative C (where du/ds < 0). The discontinuities in u under q-control represent (at the 
I-I1 boundary) a transition to the non-uniform system, where the capacitors have 
different charge densities, and (at the 11-111 boundary) a transition back to a uniform 
system (this latter branch corresponds to the region s > s”, illustrated in curve 2 of figure 
2). The horizontal dashed line represents the Maxwell path describing the phase 
transition under &control. In general it may consist of two (or more) parallel paths 
describing sequential transitions. The C(q5) curves will exhibit a corresponding number of 
sharp peaks. 

transition to a uniform phase with z1 = z2, both defined by the second stable branch 
of the EC due to the short-range repulsion between the plates, as in figure 2. 

To imitate the possible role of surface non-homogeneity we considered the model 
described by (58 )  and (63) but with z2 = zo = const. Thus, the second capacitor 
imitates a rigid domain in the double layer or membrane, while the first remains 
‘flexible’. If the ratio p 2 / p 1  is large enough, the rigid domain plays the role of 
potentiostat for the flexible one. In this sense q-control becomes equivalent to 4- 
control with all possible consequences, including the fact that the C < 0 domain 
becomes inaccessible. 

The instabilities discussed in this section are fairly universal. They appear because 
near so each fragment of the double layer is unstable with respect to charging. Trying 
to obtain charge in the absence of an external source (potentiostat), different 
fragments of the plane begin to cooperate in order to redistribute charge in an optimal 
way. The ‘gains’ of the charge acceptors should compensate for the ‘losses’ of the 
donors and the additional contributions from the non-uniform distribution of double 
layer components (i.e. metal electrons, ions, water dipoles). This condition determines 
the structure of the resulting non-uniform phase. 

Thus it is only important that C becomes negative. As seen from the discussion in 
g3.2 and 3.3, this may be a typical property of the double layer when electronic and 
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ionic relaxation are considered. Even the simplest GC system should undergo this 
transition due to the ‘electronic plate’ (x,) displacement causing C, to become 
negative for large enough negative polarization (43.2.2). It does not require any 
specific interactions between the particles in the adsorbate submonolayers, special site- 
occupation restrictions etc. This lack of sensitivity to any particular interaction and its 
origin in the combined effect of the compact and diffuse parts of the double layer makes 
the critical behaviour we are considering different from the variety of phase transitions 
occurring in surface water layers, submonolayers of ionic or molecular adsorbates, in 
the surface atomic plane of the electrode (see, for example Blum and Huckaby (1991), 
Huckaby and Blum (1991), Benderskii et al. (1994), Kornyshev and Vilfan (1995) and 
references therein). In real cases the loss of stability can lead to the appearance of a 
non-uniform phase similar to the waves of concentration in alloys (Khachaturyan 
1974) or stratification into dense and rarified phases in plasma (March and Tosi 1984). 
Stability is typically lost for a certain range of wave numbers f .  It is significant that 
both dense and diffuse parts of the double layer should be involved in the 
transformation. These phenomena make it very important to conduct the studies of 
double layer critical properties under q-control. 

4.2. Interrelation between properties of isolated and open systems 
In ‘normal’ systems the extremalq5(0) is a monotonic function, C > 0 and the two 

types of electrical control lead to the same results. Differences appear if the isolated 
system possesses a negative capacitance branch (which may include points where 
C = -0, the vertical steps of fig. 4). What happens if such a system is subject to 4- 
control? Here we describe the most general features of a system under q5-control; 
further details can be found in the literature (Feldman et al. 1986b, Nikitas 1992a, 
1994, Partenskii and Jordan 1993, Stafiej 1993). 

The results depend on the shape of the extremal #*((a). If it has n -type shape 
describing, for example, an elastic capacitor without a ‘block’ between the plates 
(figure 2) then the system is absolutely unstable under #-control. When a second stable 
branch (C > 0) exists (a simple example is the EC with ‘blocker’, figure 2) then the 
system can experience a potential-induced surface phase transition. Its features are : 

1. Divergence of capacitance C(4 --f 6) - (4  - $)r. Here r is the critical index 
(equal to 0.5 for an elastic capacitor (Feldman et al. 1986b)), 6 is the critical 
potential which can be determined, for instance, using the Maxwell rule (‘equal- 
area theorem’) (Nikitas 1993, Partenskii and Jordan 1993). 

2. Hysteresis-the shape of C(q5) differs for forward and backward potential 
variation and can depend on the rate of potential change in the vicinity of the 
critical point (Feldman et al. 1986a, 1986b, Partenskii and Kharkats 1988). 

3. Strong low-frequency dispersion of ac impedance in the vicinity of the critical 
point (Feldman et al. 1986b). 

The important question of the correspondence between the phase transitions in 
isolated and global systems has been raised in Partenskii and Kharkats (1988) and 
Nikitas (1991b). It was shown by Partenskii and Kharkats that the phase transition to 
the superionic state promotes the appearance of a C c 0 branch under q-control and, 
accordingly, the phase transition under &control. A similar relation between the two 
types of phase transition was noticed by Nikitas (1991b). Possible transition to the 
non-uniform phase creates some additional possibilities. In figure 4 the Maxwell path 
describing the transition under q5-control is drawn as the dashed line s’s”. However, 
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analysis indicates that it can be separated into two parallel paths corresponding to 
different values t& (uniform + non-uniform) and & (non-uniform + uniform phase). 
Two sharp peaks on the C(4) plots should appear in this case. 

Under &control total capacitance should be positive. But what of its components, 
C, and C,? Can, for example, C, become negative? To answer this question Nikitas 
(1992a, 1994) tried to show that the condition for a phase transition under #-control, 
C = co, can be achieved only if both Cdi, and C, are infinite and corresponding 
potential drops, 4, and ddif, remain constant during the transition. His proof is based 
on the relation 

1 1 1  -+-=-=o 
‘FI ‘dif ‘dl 

According to (12), charge fluctuations are enormous at this point. The interface can 
then roughly be described as fluctuating between two states with different charge 
density and different ionic distributions, corresponding to the two edge points of the 
‘Maxwell’ transition path (see points S’ and S” of figures 2 and 4). Moreover, due to 
the presence of a fluctuating charging current the potential drop is now distributed 
between the double layer, the bulk of electrolyte and the external resistors. 

Thus, this domain is least appropriate for dividing the double layer into two parts 
or reaching any conclusions on the basis of such a division. It is no surprise that this 
analysis leads to contradictions (Nikitas 1992a, 1994) because the GC model does not 
yield Cd, = a3 for any finite o or rjd (41). Accordingly, the quality of GC or any other 
approximation has nothing to do with its ability to describe the system in the critical 
region (see discussion in Nikitas (1994)). 

For the same reason we agree with Nikitas’ criticism (Nikitas 1992a) of the 
scenario (Kim et al. 1989) of a #-control instability arising due to compensation 
between a C;’ < 0 and a Ci/f > 0. We can only say that negative values of C, (or CdiJ 
in an isolated system may lead to negative Cd, under q-control and to related phase 
transitions in the global system. Also, in the stable domains of a global system where 
capacitance can be reasonably divided into two components (including regions close 
enough to the critical point (Partenskii and Jordan 1993)), there are no restrictions on 
the sign of the C, or Cdi, except for those considered in 54.1.7 Therefore, negative 
values of C,, extracted from experimental data for total double layer capacitance (e.g. 
Hamelin and Stoicoviciu (1987), Hamelin et al. (1988)) do not contradict any general 
principle. 

In addition to electrochemical applications the phenomena discussed are closely 
related to membrane instabilities and electroporation. Crowley (1 973) suggested an 
elegant linkage between electroporation and electroelastic instability. Later on this 
approach was abandoned in favour of phenomenological theories describing water 
pore formation (see for review Chizmadzhev (1992), Freeman et al. (1994)). The 
reasons for abandoning the Crowley picture were clearly described by Chizmadzhev 
(1992). Crowley’s model predicted significant thinning of the membrane before 

t The attempt to derive such restrictions is described in Nikitas (1992a) 0. In our view, 
equations (32) and (38) of N imply that potential drops across inner and diffuse layers can be 
controlled autonomously, which is equivalent to separate potential control of both compact and 
diffuse layers. In reality only the total potential drop can be fixed externally, while its 
components adjust themselves accordingly. Consequently we believe that concluding that C ,  
and C,, (using our notation) are strictly non-negative does not have solid justification. In 
addition, analysis of the molecular model, (45) of N, leading to a CH catastrophe under 6- 
control, is not consistent with the electrostatic analysis (53.1). 
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breakdown (see the discussion in $3.2.2) and a significant increase in capacitance; 
experiment provides no evidence for such behaviour. In our view, Crowley’s original 
idea can be made more consistent with experiment if the non-uniform nature of the 
membrane is taken into consideration. As we have shown in $4.1, the local loss of 
stability in more flexible parts of the membrane can appear without noticeable changes 
in the average membrane characteristics. This approach can shed some light on the 
early stages of pore formation. Preliminary results also indicate that coupling between 
the ‘elastic’ (related to the local compression or stretching of the membrane) degrees 
of freedom and current across the pore (or ion channel) can lead to self-oscillations of 
charge and current and transition to a chaotic regime in membrane pore (or ion 
channel) conductance (Partenskii et al. 1994). It can be expected that for these 
phenomena separate consideration of 4- and q-control will be pr0ductive.f 

5. Conclusions 
As we have seen (0 3.1) the CH catastrophe raised the very important question of 

whether negative differential capacitance is allowable. This problem catalyzed a lively 
discussion and a large literature. Ironically, the appearance of the CH catastrophe was 
based on an erroneous treatment of the electrostatic field in the molecular capacitor. 
This result seemed to satisfy common sense. 

However, the same problem appeared in the statistical mechanical treatment of the 
ionic diffuse layer and in the microscopic analysis of the compact layer accounting for 
electronic and molecular relaxation (5 3.2). All these studies implicitly assumed that the 
interface is uniform in the plane parallel to the electrode surface. The local charge 
density o was thus considered a controlled variable. In this sense q-control (where the 
total charge is fixed) was substituted by o-control. It was proved, using exactly 
solvable electromechanical models (also uniform in the plane), that under a-control 
there are no restrictions on the sign of C. 

However, the o-control assumption is only reasonable for laterally rigid systems 
(e.g. metallic-plate capacitors) while the typical contacts, such as electrode-electrolyte 
interfaces or lipid bilayers are quite flexible and charge distributions non-uniform in 
the zy plane are achievable. Thus, consistent theoretical analysis must consider the 
stability of the uniform state in a q-controlled system. 

It appears ($4.1) that in absolutely soft systems (if the effective surface tension is 
negligible or, as in the model considered, in the absence of mechanical coupling 
between the parallel capacitors) uniform relaxation becomes absolutely unstable at 
o = o,, where C-’(o) crosses the abscissa. The system makes a transition to the non- 
uniform state with both the charge density o and the ionic distribution in the 
electrolyte varying in the electrode plane keeping the total charge q fixed. Thus, the 
region C < 0 disappears; C in the ‘soft’ limit is strictly positive. Real systems dwell 
somewhere between the ‘rigid’ and ‘soft’ limits, because non-homogeneity exacts an 
energetic price. That is why there can be a domain with C < 0 before the transition to 
the non-uniform state occurs. We have illustrated this using a model with mechanical 
coupling between two parallel elastic capacitors. 

The long-standing theoretical question of whether C can become negative under o- 
control (a condition applicable to a wide class of diffuse layer studies) is resolved: 
C < 0 is allowed. But one must also check the applicability of o-control. The possibility 

t Using isolated electrodes (see Breazeal et al. (1995) and references therein) may be helpful 
for maintaining q-control. 
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of a phase transformation from the C < 0 domain and the conditions for its 
appearance require more careful examination. Consistent treatment of both the 
electronic system of the metal and the ion-dipolar system of the electrolyte may be 
crucial in this analysis. The important candidates are those models which predict a 
negative diffuse layer contribution, Cdi, < 0 (83.2.1). Their unification with electron 
contributions can possibly make the appearance of critical anomalies inevitable. An 
important issue is the effect of intrinsic non-homogeneity (such as the roughness of the 
electrode surface and inclusions in membranes). As an example, these can significantly 
reduce or nullify the domain where C < 0 and restrict the area where transformation 
can occur. 

The appearance of a C < 0 domain under q-control is a direct signal that instability 
and phase transition can occur under &control. This transition is possible even for 
rigid systems which can be absolutely stable under q-control. Thus it can occur 
between two uniform phases, although a non-uniform phase may also form. Further 
analysis of the interrelation between transitions in isolated and global systems is 
required for better understanding of critical properties and double layer anomalies at 
electrified interfaces covering a broad class of systems and phenomena, from phase 
transitions at electrochemical interfaces to membrane electroporation. 

Acknowledgments 
This work was supported by a grant from the National Institutes of Health, GM- 

28643. 

References 

AMOKRANE, S., and BADIALI, J., 1993, Modern aspects of electrochemistry, Vol. 22, edited by 
B. Conway, J. Bockris and R. White (New York, London: Plenum Press), p. 1. 

ATTARD, P., WEI, D., and PATEY, G., 1992, J. chem. Phys., 96, 3767. 
BADIALI, J., ROSINBERG, M., and GOODISMAN, J., 1983a, J .  electroanal. Chem., 143, 73. 
BADIALI, J., ROSINBERG, M., and GOODISMAN, J., 1983b, J. electroanal. Chem., 150, 25. 
BADIALI, J., ROSINBERG, M., VERICAT, F., and BLUM, L., 1983c, J. electroanal. Chem., 158,253. 
BAXTER, R. 1982, Exactly Solved Models in Statistical Mechanics (London, New York: 

Academic Press), Chap. 1. 
BENDERSKII, V., BRODSKII, A,, DAIKHIN, L., and VELICHKO, G., 1994, Modern Aspects of 

Electrochemistry, Vol. 26, edited by B. Conway, J. Bockris and R. White (New York, 
London : Plenum Press), Chap. 1, p. 1. 

BLUM, L., 1977, J. phys. Chem., 81, 136. 
BLUM, L., and HUCWY, D., 1991, J. chem. Phys., 94, 6887. 
BLUM, L., LEBOVITZ, J., and HENDERSON, D., 1980, J. chem Phys., 72,4249. 
Bocmrs, J., and REDDY, A., 1972, Modern Aspects of Electrochemistry (New York: Plenum 

BORKOWSKA, Z., and STAFIEJ, J., 1985, J. electroanal. Chem., 182,253. 
BREAZEAL, W., FLYNN, K., and GWINN, E., 1995, Phys. Rev. E, 52, 1503. 
BRODSKY, A., WATANABE, M., and REINHARDT, W., 1991, Electrochim. Acta, 36, 1695. 
BURTON, J., 1977, Statistical mechanics, edited by B. Berne (New York: Plenum Press), p. 195. 
CARNIE, S., CHAN, D., MITCHELL, D. and NINHAM, B., 1981, J. chem. Phys., 74, 1472. 
CHIZMADZHEV, Y., 1992, Electrified interfaces in physics, chemistry and biology, edited by 

R. Guidelli (Dordrecht : Kluwer). 
COOPER, I., and HARRISON, J., 1975, J. electroanal. Chem. 66, 85.  
CROWLEY, J., 1973, Biophys. J., 13, 711. 
DAMASKIN, B., and FRUMKIN, A,, 1974, Electrochim. Acta, 19, 173. 
DOGONADZE, R., and C m z w z m v ,  Y., 1964, Dokl. Akad. Nauk. USSR, 157,944. 
FAWCETT, W., 1978, J. phys. Chem., 82, 13. 
FAWCETT, W., 1979, Israel J. of Chem., 18, 3. 
FELDMAN, V., KORNYSHEV, A., and PARTENSKII, M., 1985, Solid State Commun., 53, 157. 

Press). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Negative dfleren tial capacitance at elec tr if ed in terfaces 18 1 

FELDMAN, V., and PARTENSKII, M., 1991, Electrochim. Acta, 36, 1703. 
FELDMAN, V., PARTENSKII, M., and KORNYSHEV, A., 1987, J. electroanal. Chem., 237, 1. 
FELDMAN, V., PARTENSKII, M., and VOROBJEV, M., 1986a, Electrochim. Acta, 31, 291. 
FELDMAN, V., PARTENSKII, M., and VOROBJEV, M., 1986b, Prog. Surf. Science, 23, 3. 
FREEMAN, S., WANG, M., and WEAVER, J., 1994, Biophys. J., 67, 42. 
GRAHAM, D., 1947, Chem. Rev., 41, 441. 
GRAHAME, D. C., 1954, J. Am. chem. Soc., 76,4819. 
GUIDELLI, R., 1990, J. chem. Phys., 92, 6152. 
GUREVICH, Y., and KHARKATS, Y. I., 1977, Sou. Phys. Dokl., 236, 332. 
HALLEY, J., JOHNSON, B., PRICE, D., and SCHWALM, M., 1985, Phys. Rev. B, 31,7695. 
HALLEY, J., and PRICE, D., 1987, Phys. Rev. B, 35, 9095. 
HAMELIN, A., DOUBOVE, L., STOICOVICIU, L., and TRASSATI, S., 1988, J. electroanal. Chem., 244, 

HAMELIN, A. and STOICOVICIU, L. 1987, J. electroanal. Chem., 236, 267. 
HAUTMAN, J., HALLEY, J., and RHEE, Y.-J., 1989, J. chem. Phys., 91, 467. 
HENDERSON, D., BLUM, L., and SMITH, W., 1979, Chem. Phys. Lett., 63, 381. 
HILL, T., 1956, Statistical Mechanics (New York: McGraw-Hill). 
HUANG, K., 1963, Statistical Mechanics (New York: Wiley). 
HUCKA~Y, D., and BLUM, L., 1991, J. electroanal. Chem., 315, 255. 
KHACHATURYAN, A., 1974, Theory of Phase Transformations and Structure of Solid solvents 

KIM, Z., KORNYSHEV, A., and PARTENSKII, M., 1989, J. electroanal. Chem., 265, 1. 
KIM, Z., PARTENSKII, M., and SOLOVJEVA, L., 1988, Rasplauy (The Melts), 2(1), 102 (in Russian). 
KORNYSHEV, A., 1985, Chemical Physics of Solvation, Vol. C, edited by R. E. Kalman, 

KORNYSHEV, A., 1989, Electrochim. Acta, 34, 1829. 
KORNYSHEV, A., and VILFAN, I., 1995, Electrochim. Acta, 40, 109. 
KORNYSHEV, A., and VOROTYNTSEV, M., 1981, Can. J. Chem., 59,2031. 
LANDAU, L., and LIFSHITZ, E., 1960, Electrodynamics of Continuous Media (Oxford: Pergamon 

LANG, N., 1973, Solid State Physics, Vol. 28 (New York: Academic Press) p. 225. 

133. 

(Moscow: Nauka). 

A. Kornyshev and J. Ulstrup (Amsterdam: Elsevier Science), Chap. 6. 

Press). 

LANG, N., 1983, Theory of the inhomogeneous electron gas (New York, London: Plenum Press), 
P. 309. 

LEVINE, L., BELL, G., and SMITH, A., 1969, J. phys. Chem., 73, 3534. 
MACDONALD, J., 1954, J. chem. Phys., 22, 1857. 
MACDONALD, J., 1964, J. appl. Phys., 35, 3053. 
MACDONALD, J., 1987, J.  electroanal. Chem., 223, 1. 
MACDONALD, J., FRANCESCHETTI, D., and LEHNEN, A., 1980, J. chem. Phys., 73, 5272. 
MACDONALD, R., and BARLOW, C., 1962, J. chem. Phys., 36, 3062. 
MARCH, N., and TOSI, M., 1984, Coulomb liquids (New York: Academic Press). 
MARSHALL, S., and CONWAY, B., 1987, J. electroanal. Chem., 227, 245. 
MARSHALL, S., and CONWAY, B., 1992, J. electroanal. Chem., 337, 67. 
MARSHALL, S., and CONWAY, S., 1984, J. chem. Phys., 81, 923. 
MCCOMBIE, C., 1971, Problems in thermodynamics andstatisticalphysics, edited by P. Landsberg 

MOTT, N., and WATTS-TOBIN, R., 1961, Electrochim. Acta, 4, 79. 
NIKITAS, P., 1987, J. electroanal. Chem., 227, 237. 
NIKITAS, P., 1991a, J. electroanal. Chem., 306, 13. 
NIKITAS, P., 1991b, J. electroanal. Chem., 316, 23. 
NIKITAS, P., 1992a, Electrochim. Acta, 37, 8 I. 
NIKITAS, P., 1992b, Electrochim. Acta, 37, 1919. 
NIKITAS, P., 1993, Electrochim. Acta, 38, 1441. 
NIKITAS, P., 1994, Electrochim. Acta, 39,2055. 
PARSONS, R., 1954, Modern Aspects of Electrochemistry, Vol. 1, edited by J. Bockris and 

PARSONS, R., 1975, J. electroanal. Chem., 59, 359. 
PARSONS, R., 1980, J. electroanal. Chem., 109, 369. 
PARSONS, R., and REEVES, R., 1985, J. electroanal. Chem., 123, 141. 

(London: Pion), p. 459 (Problem 21.3). 

B. Conway (New York: Academic Press), p. 103. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



182 Negative diferential capacitance at electrijied interfaces 

PARTENSKII, M., 1979, Sou. Phys. Usp., 22, 330. 
PARTENSKII, M., and BLUM, L., 1990, unpublished results. 
PARTENSKII, M., DORMAN, V., and JORDAN, P., 1994, Biophys. J., 66, A223. 
PARTENSKII, M., and FELDMAN, V., 1989, J. electroanal. Chem., 273, 57. 
PARTENSKII, M., and JORDAN, P., 1993, J. chem. Phys., 99,2992. 
PARTENSKII, M., and KHARKATS, Y., 1988, Rasplavy (The Melts), 2(6), 57 (in Russian). 
PARTENSKII, M., and KIM, Z., 1986, Electrodynamics and quantum phenomena at interfaces: 

Proceedings of the International Conference, Telavi, USSR, I984 (Tbilisi : Mecneareba), 
p. 72. 

PARTENSKII, M., KIM, Z., and FELDMAN, V., 1987, Sou. Phys. J., 30,907. 
PARTENSKU, M., KIM, Z., FELDMAN, V., and SOLOVJEVA, L., 1986, in 37th Meet. Intern. SOC. 

PARTENSKII, M., KUZEMA, V., and FELDMAN, V., 1981, Sou. Phys. J., 11, 985. 
PARTENSKII, M., and VOROBJEV, M. 1984, Sou. Phys. Dokl., 29, 746. 
PRICE, D., and HALLEY, J., 1983, J. electroanal. Chem., 150, 347. 
PRICE, D., and Halley, J., 1995, J. chem. Phys., 102, 6603. 
RALEIGH, D., 1976, Electrode processes in solid state ionics (Dordrecht: Reidel) p. 119. 
REMEZ, I., and CHEBOTIN, V., 1984, Electrochim. Acta, 29, 1389. 
RICE, O., 1928, Phys. Rev., 31, 1051. 
ROSINBERG, M., BLUM, L., and LEBOWTZ, J., 1985, J. chem. Phys., 83, 892. 
SCHMICKLER, W., 1983, J. electroanal. Chem., 149, 15. 
SCHMICKLER, W., and HENDERSON, D., 1984, J. chem. Phys., 80, 3381. 
SCHMICKLER, W., and HENDERSON, D., 1986, Progr. Surf. Science, 22, 323. 
SCHMICKLER, W., and HENDERSON, D., 1989, J. electroanal. Chem., 265, 11. 
STAFIEJ, J., 1993, J. electroanal. Chem., 351, 1 .  
STYLLER, M., 1995, unpublished results. 
SZE, S., 1969, Physics of Semiconductor Devices (New York: Wiley & Sons). 
THEOPHYLOU, A., 1972, J. phys. F, 2, 1 124. 
TOPPING, J., 1927, Proc. R. SOC. London A., 114,67. 
TORRIE, G., 1992, J .  chem. Phys., 96, 3772. 
TORRIE, G., and VALLEAU, J., 1982, J. phys. Chem., 86, 3251. 
TSONG, T., and MULLER, E., 1969, Phys. Rev., 181, 530. 
WATTS-TOBIN, R., 1961, Phil. Mag., 6, 133. 
WEI, D., TORRIE, G., and PATEY, G., 1993, J. chem. Phys., 99,3990. 

Electrochem. Extend. Abstr., p. 160, Vilnus, USSR. Lithv. Acad. Sci. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1


